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         VECTOR CALCULUS AND ITS APPLICATIONS           

                                       ABSTRACT 

 

 

Abstract this chapter sets the ground for the derivation of the 
conservation equations by providing a brief review of the 
continuum mechanics tools needed for that purpose while 
establishing some of the mathematical notations and 
procedures that will be used throughout the book. The review is 
by no mean comprehensive and assumes a basic knowledge of 
the fundamentals of continuum mechanics. A short 
introduction of the elements of linear algebra including vectors, 
matrices, tensors, and their practices is given. The chapter ends 
with an examination of the fundamental theorems of vector 
calculus, which constitute the elementary building blocks 
needed for manipulating and solving these conservation 
equations either analytically or numerically using 
computational fluid dynamics. 
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Introduction : 

 

     The transfer phenomena of interest here can be 
mathematically represented by equations involving physical 
variables that fall under three categories: scalars, vectors, and 
tensors [1–3]. Throughout this book scalars are designated by 
lightface italic, vectors by lower boldface Roman, and tensors 
by boldface Greek letters. In addition, matrices are identified by 
upper boldface Roman letters. A scalar represents a quantity 
that has magnitude such as volume V, pressure p, temperature 
T, time t, mass m, and density q. A vector represents a quantity 
of a given magnitude and direction such as velocity v, 
momentum L ¼ mv, and force F. A matrix is a rectangular 
array of quantities ordered along rows and columns. A tensor is 
a mathematical object analogous to but more general than a 
vector, represented by an array of components, such as the 
shear stress tensor. Moreover, the conservation equations are 
composed of terms that represent the product of two or more 
variables. The multiplication involved may be of various types 
to be detailed later and the variables could be a combination of 
the three types described above. Whenever the multiplication 
results in a scalar, the product will be enclosed by parentheses 
“(product)”, if it results in a vector it will be enclosed by square 
brackets “[product]”, and if it results in a tensor it will be 
enclosed by curly brackets “{product}”. 

 

 

 

 

 

 

 

 



 

Vector calculus, or vector analysis, is a branch of mathematics 
concerned with differentiation and integration of vector fields, 

 primarily in 3-dimensional Euclidean space  The term "vector 
calculus" is sometimes used as a synonym for the broader 
subject of multivariable calculus, which includes vector 
calculus as well as partial differentiation and multiple 
integration. Vector calculus plays an important role 
in differential geometry and in the study of partial differential 
equations. It is used extensively in many disciplines, such 
as physics, engineering, and machine learning. Example 
applications include electromagnetic fields, gravitational 
fields, fluid flow, and back propagation. 

Vector calculus was developed from quaternion analysis by J. 
Willard Gibbs and Oliver Heaviside near the end of the 19th 
century, and most of the notation and terminology was 
established by Gibbs and Edwin Bidwell Wilson in their 1901 
book, Vector Analysis. In the conventional form using cross 
products, vector calculus does not generalize to higher 
dimensions, while the alternative approach of geometric 
algebra, which uses exterior products does generalize, 
as discussed below. 

 

 

DEFINATIONS : 

 

Scalar fields : 

        A scalar field associates a scalar value to every point in a 
space. The scalar may either be a mathematical number or 
a physical quantity. Examples of scalar fields in applications 
include the temperature distribution throughout space, 
the pressure distribution in a fluid, and spin-zero quantum 
fields, such as the Higgs field. These fields are the subject 
of scalar field theory. 

https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Vector_field
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Multivariable_calculus
https://en.wikipedia.org/wiki/Partial_derivative
https://en.wikipedia.org/wiki/Multiple_integral
https://en.wikipedia.org/wiki/Multiple_integral
https://en.wikipedia.org/wiki/Differential_geometry
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Engineering
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Electromagnetic_field
https://en.wikipedia.org/wiki/Gravitational_field
https://en.wikipedia.org/wiki/Gravitational_field
https://en.wikipedia.org/wiki/Fluid_flow
https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/J._Willard_Gibbs
https://en.wikipedia.org/wiki/J._Willard_Gibbs
https://en.wikipedia.org/wiki/Oliver_Heaviside
https://en.wikipedia.org/wiki/Edwin_Bidwell_Wilson
https://en.wikipedia.org/wiki/Vector_Analysis
https://en.wikipedia.org/wiki/Cross_products
https://en.wikipedia.org/wiki/Cross_products
https://en.wikipedia.org/wiki/Geometric_algebra
https://en.wikipedia.org/wiki/Geometric_algebra
https://en.wikipedia.org/wiki/Exterior_product
https://en.wikipedia.org/wiki/Vector_calculus#Generalizations
https://en.wikipedia.org/wiki/Scalar_field
https://en.wikipedia.org/wiki/Scalar_(mathematics)
https://en.wikipedia.org/wiki/Scalar_(mathematics)
https://en.wikipedia.org/wiki/Scalar_(physics)
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Pressure
https://en.wikipedia.org/wiki/Higgs_field
https://en.wikipedia.org/wiki/Scalar_field_theory


 

Vector fields : 

        A vector field is an assignment of a vector to each point in 
a subset of space.[1] A vector field in the plane, for instance, can 
be visualized as a collection of arrows with a 
given magnitude and direction each attached to a point in the 
plane. Vector fields are often used to model, for example, the 
speed and direction of a moving fluid throughout space, or the 
strength and direction of some force, such as 
the magnetic or gravitational force, as it changes from point 
to point. 

Vectors and pseudo vectors : 

In more advanced treatments, one further 
distinguishes pseudo vector fields and pseudo scalar fields, 
which are identical to vector fields and scalar fields except that 
they change sign under an orientation-reversing map: for 
example, the curl of a vector field is a pseudo vector field, and 
if one reflects a vector field, the curl points in the opposite 
direction. This distinction is clarified and elaborated in 
geometric algebra, as described below. 

Vector algebra : 

The algebraic (non-differential) operations in vector calculus 
are referred to as vector algebra, being defined for a vector 
space and then globally applied to a vector field. The basic 
algebraic operations consist of: 

 

Also commonly used are the two triple products: 

https://en.wikipedia.org/wiki/Vector_field
https://en.wikipedia.org/wiki/Vector_(geometry)
https://en.wikipedia.org/wiki/Space_(mathematics)
https://en.wikipedia.org/wiki/Vector_calculus#cite_note-Galbis-2012-p12-1
https://en.wikipedia.org/wiki/Magnitude_(mathematics)#Vector_spaces
https://en.wikipedia.org/wiki/Force
https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Gravity
https://en.wikipedia.org/wiki/Pseudovector
https://en.wikipedia.org/wiki/Pseudoscalar
https://en.wikipedia.org/wiki/Vector_algebra
https://en.wikipedia.org/wiki/Triple_product


 

 

 

Operators and theorems 

 

Differential operators 

Main articles: Gradient, Divergence, Curl (mathematics), 

and Laplacian 

Vector calculus studies various differential operators defined 
on scalar or vector fields, which are typically expressed in 

terms of the del operator ( ), also known as "nabla". The 
three basic vector operators are: 

 

 

 

 

 

https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Divergence
https://en.wikipedia.org/wiki/Curl_(mathematics)
https://en.wikipedia.org/wiki/Laplacian
https://en.wikipedia.org/wiki/Differential_operator
https://en.wikipedia.org/wiki/Del
https://en.wikipedia.org/wiki/Vector_operator


 

 

 

 

 

 

 

Also commonly used are the two Laplace operators: 

 

A quantity called the Jacobian matrix is useful for studying 
functions when both the domain and range of the function are 
multivariable, such as a change of variables during 
integration 

Integral theorems : 

The three basic vector operators have corresponding theorems 
which generalize the fundamental theorem of calculus to 
higher dimensions: 

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
https://en.wikipedia.org/wiki/Change_of_variables
https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus


 

 

 

In two dimensions, the divergence and curl theorems reduce to 
the Green's theorem: 

 

 

 

Gradient theorem : 

The gradient theorem, also known as the fundamental 

theorem of calculus for line integrals, says that a line 

integral through a gradient field can be evaluated by 

evaluating the original scalar field at the endpoints of the 

curve. 

Let φ : U ⊆ℝn → ℝ and γ is any curve from p to q. Then 

 

https://en.wikipedia.org/wiki/Line_integral
https://en.wikipedia.org/wiki/Line_integral
https://en.wikipedia.org/wiki/Conservative_vector_field


 

 

It is a generalization of the fundamental theorem of calculus to 
any curve in a plane or space (generally n-dimensional) 
rather than just the real line. 

The gradient theorem implies that line integrals through 
gradient fields are path independent. In physics this theorem 
is one of the ways of defining a conservative force. By 
placing φ as potential, ∇φ is a conservative field.Work done by 
conservative forces does not depend on the path followed by 
the object, but only the end points, as the above equation 
shows. 

The gradient theorem also has an interesting converse: any 
path-independent vector field can be expressed as the gradient 
of a scalar field. Just like the gradient theorem itself, this 
converse has many striking consequences and applications in 
both pure and applied mathematics. 

Pr 

If φ is a differentiable function from some open 
subset U (of ℝn) to ℝ, and if r is a differentiable function from 
some closed interval [a, b] to U, then by the multivariate chain 
rule, the composite function φ ∘ r is differentiable on (a, b) and 

 
 

for all t in (a, b). Here the ⋅ denotes the usual inner 

product. 

Now suppose the domain U of φ contains the 
differentiable curve γ with endpoints p and q, 
(oriented in the direction from p to q). 

https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus
https://en.wikipedia.org/wiki/Conservative_vector_field#Path_independence
https://en.wikipedia.org/wiki/Conservative_force
https://en.wikipedia.org/wiki/Conservative_field
https://en.wikipedia.org/wiki/Work_(physics)
https://en.wikipedia.org/wiki/Scalar_field
https://en.wikipedia.org/wiki/Differentiable_function
https://en.wikipedia.org/wiki/Open_set
https://en.wikipedia.org/wiki/Open_set
https://en.wikipedia.org/wiki/Interval_(mathematics)
https://en.wikipedia.org/wiki/Chain_rule#Higher_dimensions
https://en.wikipedia.org/wiki/Chain_rule#Higher_dimensions
https://en.wikipedia.org/wiki/Function_composition
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Orientation_(vector_space)


 

If r parametrizes γ for t in [a, b], then the above shows 
that [1] 

 

where the definition of the line integral is used in the 
first equality, and the fundamental theorem of 
calculus is used in the third equality. 

 

Examples 

 

Example 1 

Suppose γ ⊂ℝ2 is the circular arc oriented counterclockwise 
from (5, 0) to (−4, 3). Using the definition of a line integral, 

https://en.wikipedia.org/wiki/Parametrization_(geometry)
https://en.wikipedia.org/wiki/Gradient_theorem#cite_note-1
https://en.wikipedia.org/wiki/Line_integral#Line_integral_of_a_vector_field
https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus
https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus
https://en.wikipedia.org/wiki/Line_integral#Line_integral_of_a_vector_field


 

 

Notice all of the painstaking computations involved in 
directly calculating the integral. Instead, since the 
function f(x, y) = xy is differentiable on all of ℝ2, we can 
simply use the gradient theorem to say 

 

Notice that either way gives the same answer, but using 
the latter method, most of the work is already done in the 
proof of the gradient theorem. 

 

Example 2 

For a more abstract example, suppose γ ⊂ℝn has 
endpoints p, q, with orientation from p to q. For u in ℝn, 
let |u| denote the Euclidean norm of u. If α ≥ 1 is a real 
number, then 

https://en.wikipedia.org/wiki/Euclidean_norm


 

 

Here the final equality follows by the gradient theorem, 
since the function f(x) = |x|α+1 is differentiable on ℝn if α ≥ 1. 

If α < 1 then this equality will still hold in most cases, but 
caution must be taken if γ passes through or encloses the 
origin, because the integrand vector field |x|α − 1x will fail to 
be defined there. However, the case α = −1 is somewhat 
different; in this case, the integrand becomes |x|−2x = ∇(log 
|x|), so that the final equality becomes log |q| − log |p|. 

Note that if n = 1, then this example is simply a slight 
variant of the familiar power rule from single-variable 
calculus. 

 

Example 3 

Suppose there are n point charges arranged in three-
dimensional space, and the i-th point charge has charge Qi and 
is located at position pi in ℝ3. We would like to calculate 
the work done on a particle of charge q as it travels from a 
point a to a point b in ℝ3. Using Coulomb's law, we can easily 
determine that the force on the particle at position r will be 

 

Here |u| denotes the Euclidean norm of the vector u in ℝ3, 
and k = 1/(4πε0), where ε0 is the vacuum permittivity. 

Let γ ⊂ℝ3 − {p1, ..., pn} be an arbitrary differentiable curve 
from a to b. Then the work done on the particle is 

https://en.wikipedia.org/wiki/Power_rule
https://en.wikipedia.org/wiki/Point_particle#Point_charge
https://en.wikipedia.org/wiki/Electric_charge
https://en.wikipedia.org/wiki/Work_(physics)
https://en.wikipedia.org/wiki/Coulomb%27s_law
https://en.wikipedia.org/wiki/Force
https://en.wikipedia.org/wiki/Euclidean_norm
https://en.wikipedia.org/wiki/Vacuum_permittivity


 

 

Now for each i, direct computation shows that 

 

Thus, continuing from above and using the gradient 
theorem, 

 

We are finished. Of course, we could have easily 
completed this calculation using the powerful 
language of electrostatic potential or electrostatic 
potential energy (with the familiar formulas W = 
−ΔU = −qΔV). However, we have not 
yet defined potential or potential energy, because 
the converse of the gradient theorem is required to 
prove that these are well-defined, differentiable 
functions and that these formulas hold (see below). 
Thus, we have solved this problem using only 
Coulomb's Law, the definition of work, and the 
gradient theorem 

Divergence theorem 

"Gauss's theorem" redirects here. For Gauss's theorem 

concerning the electric field, see Gauss's law. 

"Ostrogradsky theorem" redirects here. For Ostrogradsky's 

theorem concerning the linear instability of the Hamiltonian 

associated with a Lagrangian dependent on higher time 

derivatives than the first, see Ostrogradsky instability. 

https://en.wikipedia.org/wiki/Electric_potential
https://en.wikipedia.org/wiki/Electric_potential_energy
https://en.wikipedia.org/wiki/Electric_potential_energy
https://en.wikipedia.org/wiki/Gradient_theorem#Example_of_the_converse_principle
https://en.wikipedia.org/wiki/Gauss%27s_law
https://en.wikipedia.org/wiki/Ostrogradsky_instability


 

In tensor calculus, the divergence theorem, also known 
as Gauss's theorem or Ostrogradsky's theorem, is a result that 
relates the flow (that is, flux) of a tensor field through 
a surface to the behaviour of the tensor field inside the surface. 

More precisely, the divergence theorem states that the 
outward flux of a tensor field through a closed surface is equal 
to the volume integral of the divergence over the region inside 
the surface. Intuitively, it states that the sum of all sources 
(with sinks regarded as negative sources) gives the net flux out 
of a region. 

The divergence theorem is an important result for the 
mathematics of physics and engineering, in particular 
in electrostatics and fluid dynamics. 

In physics and engineering, the divergence theorem is usually 
applied in three dimensions. However, it generalizes to any 
number of dimensions. In one dimension, it is equivalent to 
the fundamental theorem of calculus. In two dimensions, it is 
equivalent to Green's theorem. 

The theorem is a special case of the more general Stokes' 
theorem. 

Intuition : 

If a fluid is flowing in some area, then the rate at which fluid 
flows out of a certain region within that area can be calculated 
by adding up the sources inside the region and subtracting the 
sinks. The fluid flow is represented by a first order (or a 
vector) field, and the vector field's divergence at a given point 
describes the strength of the source or sink there. So, 
integrating the field's divergence over the interior of the 
region should equal the integral of the vector field over the 
region's boundary. The divergence theorem says that this is 
true. 

The divergence theorem is employed in any conservation 
law which states that the volume total of all sinks and sources, 
that is the volume integral of the divergence, is equal to the net 
flow across the volume's boundary. 

https://en.wikipedia.org/wiki/Tensor_calculus
https://en.wikipedia.org/wiki/Flux
https://en.wikipedia.org/wiki/Tensor_field
https://en.wikipedia.org/wiki/Surface_(mathematics)
https://en.wikipedia.org/wiki/Flux
https://en.wikipedia.org/wiki/Volume_integral
https://en.wikipedia.org/wiki/Divergence
https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Engineering
https://en.wikipedia.org/wiki/Electrostatics
https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus
https://en.wikipedia.org/wiki/Green%27s_theorem
https://en.wikipedia.org/wiki/Stokes%27_theorem
https://en.wikipedia.org/wiki/Stokes%27_theorem
https://en.wikipedia.org/wiki/Conservation_law
https://en.wikipedia.org/wiki/Conservation_law


 

Mathematical statement 

 

Suppose V is a subset of  (in the case of n = 3, V represents a 
volume in three-dimensional space) which is compact and has 
a piecewise smooth boundary S (also indicated with ∂V = S ). 
If F is a continuously differentiable vector field defined on 
a neighbourhood of V, then we have:[6] 

   

The left side is a volume integral over the volume V, the 
right side is the surface integral over the boundary of the 
volume V. The closed manifold ∂V is quite generally the 
boundary of V oriented by outward-pointing normals, 
and n is the outward pointing unit normal field of the 
boundary ∂V. (dS may be used as a shorthand for ndS.) The 
symbol within the two integrals stresses once more 
that ∂V is a closed surface. In terms of the intuitive 
description above, the left-hand side of the equation 
represents the total of the sources in the volume V, and the 
right-hand side represents the total flow across the 
boundary S.  

https://en.wikipedia.org/wiki/Three-dimensional_space
https://en.wikipedia.org/wiki/Compact_space
https://en.wikipedia.org/wiki/Piecewise
https://en.wikipedia.org/wiki/Smooth_surface
https://en.wikipedia.org/wiki/Neighbourhood_(mathematics)
https://en.wikipedia.org/wiki/Divergence_theorem#cite_note-spiegel-6
https://en.wikipedia.org/wiki/Volume_integral
https://en.wikipedia.org/wiki/Surface_integral
https://en.wikipedia.org/wiki/Normal_(geometry)


 

        

 

 

 

 

Corollaries : 

 

            By replacing  in the divergence theorem with specific 
forms, other useful identities can be derived (cf. vector 
identities). 

 With F→Fg for a scalar function g and a vector field F, 

 

   

https://en.wikipedia.org/wiki/Vector_identities
https://en.wikipedia.org/wiki/Vector_identities


 

A special case of this is F = ∇ f , in which case the theorem 

is the basis for Green's identities. 

 With F→F×G for two vector fields F and G, 

   

 With F→fc for a scalar function  f  and vector field c 

 

   

The last term on the right vanishes for constant  C or any 

divergence free (solenoidal) vector field, e.g. 

Incompressible flows without sources or sinks such as 

phase change or chemical reactions etc. In particular, 

taking C to be constant: 

   

 With F→C×F for vector field F and constant 
vector c 

   

By reordering the triple product on the right hand side 

and taking out the constant vector of the integral, 

https://en.wikipedia.org/wiki/Green%27s_identities
https://en.wikipedia.org/wiki/Triple_product


 

 

  

Hence, 

  

 
 

Example 

 
The vector field corresponding to the example shown. Note, 
vectors may point into or out of the sphere. 

Suppose we wish to evaluate 

  

where S is the unit sphere defined by 

https://en.wikipedia.org/wiki/Unit_sphere
https://en.wikipedia.org/wiki/File:Vector_Field_on_a_Sphere.png


 

 

and F is the vector field 

 

The direct computation of this integral is quite 
difficult, but we can simplify the derivation of the 
result using the divergence theorem, because the 
divergence theorem says that the integral is equal to: 

where W is the unit ball: 
 

 

 

Since the function y is positive in one hemisphere 
of W and negative in the other, in an equal and 
opposite way, its total integral over W is zero. 
The same is true for z: 

 

Therefore, 

  
because the unit ball W has volume 4π/3. 

https://en.wikipedia.org/wiki/Vector_field
https://en.wikipedia.org/wiki/Volume


 

Applications : 

 

Differential form and integral form of physical laws 

As a result of the divergence theorem, a host of physical laws 
can be written in both a differential form (where one quantity 
is the divergence of another) and an integral form (where the 
flux of one quantity through a closed surface is equal to 
another quantity). Three examples are Gauss's 
law (in electrostatics), Gauss's law for magnetism, 
and Gauss's law for gravity. 

 

Continuity equations 

Continuity equations offer more examples of laws with both 
differential and integral forms, related to each other by the 
divergence theorem. In fluid 
dynamics, electromagnetism, quantum mechanics, relativity 
theory, and a number of other fields, there are continuity 
equations that describe the conservation of mass, momentum, 
energy, probability, or other quantities. Generically, these 
equations state that the divergence of the flow of the conserved 
quantity is equal to the distribution of sources or sinks of that 
quantity. The divergence theorem states that any such 
continuity equation can be written in a differential form (in 
terms of a divergence) and an integral form (in terms of a 
flux). 

History 

The theorem was first discovered by Lagrange in 1762, then 
later independently rediscovered by Gauss in 
1813, by Ostrogradsky, who also gave the first proof of the 
general theorem, in 1826, by Green in 1828, etc. Subsequently, 
variations on the divergence theorem are correctly called 
Ostrogradsky's theorem, but also commonly Gauss's theorem, 
or Green's theorem. 

 

https://en.wikipedia.org/wiki/Gauss%27s_law
https://en.wikipedia.org/wiki/Gauss%27s_law
https://en.wikipedia.org/wiki/Electrostatics
https://en.wikipedia.org/wiki/Gauss%27s_law_for_magnetism
https://en.wikipedia.org/wiki/Gauss%27s_law_for_gravity
https://en.wikipedia.org/wiki/Continuity_equation
https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Electromagnetism
https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Relativity_theory
https://en.wikipedia.org/wiki/Relativity_theory
https://en.wikipedia.org/wiki/Continuity_equation
https://en.wikipedia.org/wiki/Continuity_equation
https://en.wikipedia.org/wiki/Theorem
https://en.wikipedia.org/wiki/Joseph_Louis_Lagrange
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/Mikhail_Vasilievich_Ostrogradsky
https://en.wikipedia.org/wiki/George_Green_(mathematician)
https://en.wikipedia.org/wiki/Green%27s_theorem


 

 

Examples 

To verify the planar variant of the divergence theorem for a 
region R: 

 

and the vector field: 

 
The boundary of R is the unit circle, C, that can be 
represented parametrically by: 

 

such that 0 ≤ s ≤ 2π where s units is the length arc 
from the point s = 0 to the point P on C. Then a vector 
equation of C is 

 

 

At a point P on C: 

 

Therefore, 



 

 
Because M = 2y, ∂M/∂x = 0, and because N = 
5x, ∂N/∂y = 0. Thus 

 

Generalizations 

 

One can use the general Stokes' Theorem to equate the n-
dimensional volume integral of the divergence of a vector 
field F over a region U to the (n − 1)-dimensional surface 
integral of F over the boundary of U: 

 

This equation is also known as the Divergence theorem. 

When n = 2, this is equivalent to Green's theorem. 

When n = 1, it reduces to the Fundamental theorem of 
calculus. 

https://en.wikipedia.org/wiki/Stokes%27_Theorem
https://en.wikipedia.org/wiki/Green%27s_theorem
https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus
https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus


 

Tensor fields 

Writing the theorem in Einstein notation: 

   

suggestively, replacing the vector field F with a rank-
n tensor field T, this can be generalized to: 

   

where on each side, tensor contraction occurs for at 
least one index. This form of the theorem is still in 3d, 
each index takes values 1, 2, and 3. It can be 
generalized further still to higher (or lower) 
dimensions (for example to 4d spacetime in general 
relativity[15]). 

 

 

 

 

 

 
 

https://en.wikipedia.org/wiki/Einstein_notation
https://en.wikipedia.org/wiki/Tensor_contraction
https://en.wikipedia.org/wiki/Spacetime
https://en.wikipedia.org/wiki/General_relativity
https://en.wikipedia.org/wiki/General_relativity
https://en.wikipedia.org/wiki/Divergence_theorem#cite_note-15


 

 

 

KELVIN-STOKES THEOREM : 

An illustration of the Kelvin–Stokes theorem, with surface Σ, 
its boundary ∂Σ and the "normal" vector n. 

The Kelvin–Stokes theorem (named for Lord 
Kelvin and George Stokes), also known as the curl theorem, is 
a theorem in vector calculus on R3. Given a vector field, the 
theorem relates the integral of the curl of the vector field over 
some surface, to the line integral of the vector field around the 
boundary of the surface. The Kelvin–Stokes theorem is a 
special case of the “generalized Stokes' theorem. In particular, 
a vector field on R3 can be considered as a 1-form in which 
case curl is the exterior derivative. 

If (P(x,y,z),Q(x,y,z),R(x,y,z)) is defined in a region with smooth 
surface Σ and has first order continuous partial 
derivatives then 

 

where ∂Σ is boundary of region with smooth surface Σ. 

https://en.wikipedia.org/wiki/Lord_Kelvin
https://en.wikipedia.org/wiki/Lord_Kelvin
https://en.wikipedia.org/wiki/Sir_George_Stokes,_1st_Baronet
https://en.wikipedia.org/wiki/Vector_calculus
https://en.wikipedia.org/wiki/Vector_field
https://en.wikipedia.org/wiki/Surface_integral
https://en.wikipedia.org/wiki/Curl_(mathematics)
https://en.wikipedia.org/wiki/Line_integral
https://en.wikipedia.org/wiki/Stokes%27_theorem
https://en.wikipedia.org/wiki/Differential_form
https://en.wikipedia.org/wiki/Exterior_derivative
https://en.wikipedia.org/wiki/Partial_derivatives
https://en.wikipedia.org/wiki/Partial_derivatives
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Theorem 

Let γ: [a, b] → R2 be a piecewise smooth Jordan plane curve. 
The Jordan curve theorem implies that γ divides R2 into two 
components, a compact one and another that is non-compact. 
Let D denote the compact part that is bounded by γ and 
suppose ψ: D → R3 is smooth, with S := ψ(D). If Γ is the space 
curvedefined by Γ(t) = ψ(γ(t)) and F is a smooth vector field 
on R3, then 

 

Proof 

The proof of the theorem consists of 4 steps.[ We 
assume Green's theorem, so what is of concern is how to boil 
down the three-dimensional complicated problem (Kelvin–
Stokes theorem) to a two-dimensional rudimentary problem 
(Green's theorem). When proving this theorem, 
mathematicians normally use the differential form. The "pull-
back[ of a differential form" is a very powerful tool for this 
situation, but learning differential forms requires substantial 
background knowledge. So, the proof below does not require 
knowledge of differential forms, and may be helpful for 
understanding the notion of differential forms. 

First step of the proof (defining the pullback) 

Define 

 

so that P is the pull-back of F, and that P(u, v) is R2-valued 
function, dependent on two parameters u, v. In order to do 
so we define P1 and P2 as follows. 

Where <I> is the normal inner product (for Euclidean 

vectors, the dot product; see Bra-ket notation) of R3 and 
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hereinafter, <IAI> stands for the bilinear formaccording 

to matrix A. 

Second step of the proof (first equation) 

According to the definition of a line integral, 

 

where, Jψ stands for the Jacobian matrix of ψ, and the 
clear circle denotes function composition. Hence, 

 

So, we obtain the following equation 

 

Third step of the proof (second equation) 

First, calculate the partial derivatives, using the Leibniz 
rule (product rule): 
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So, 

 

On the other hand, according to the definition of 
a surface integral, 

 

So, we obtain 

 

Fourth step of the proof (reduction to Green's theorem) 

et C be a positively oriented, piecewise smooth, simple closed 
curve in a plane, and let D be the region bounded by C. 
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If L and M are functions of (x, y) defined on an open 
region containing D and have continuous partial 
derivatives there, then 

 

 

 
where the path of integration along C is anticlockwise. 

 

where g1 and g2 are continuous functions on [a, b]. 

Compute the double integral in (1): 
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Now compute the line integral in (1). C can be rewritten as the 
union of four curves: C1, C2, C3, C4. 

With C1, use the parametric 
equations: x = x, y = g1(x), a ≤ x ≤ b. Then 

 

 

With C3, use the parametric 
equations: x = x, y = g2(x), a ≤ x ≤ b. Then 

 

The integral over C3 is negated because it goes in the 
negative direction from b to a, as C is oriented positively 
(anticlockwise). On C2 and C4, x remains constant, 
meaning 

 

Therefore, 

 

Combining (3) with (4), we get (1) for regions of 
type I. A similar treatment yields (2) for regions of 
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type II. Putting the two together, we get the result 
for regions of type III. 

 

 

 

 

 

 

Green's theorem : 

 

Theorem 

Let C be a positively oriented, piecewise smooth, simple closed 
curve in a plane, and let D be the region bounded by C. 
If L and M are functions of (x, y) defined on an open 
region containing D and have continuous partial 
derivatives there, then 

  

 
where the path of integration along C is anticlockwise. 

In physics, Green's theorem finds many applications. One of 
which is solving two-dimensional flow integrals, stating 
that the sum of fluid outflows from a volume is equal to the 
total outflow summed about an enclosing area. In plane 
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geometry, and in particular, area surveying, Green's 
theorem can be used to determine the area and centroid of 
plane figures solely by integrating over the perimeter. 

Proof  

when D is a simple region 

 

If D is a simple type I region with its boundary consisting of 
the curves C1, C2, C3, C4, half of Green's theorem can be 
demonstrated. 

The following is a proof of half of the theorem for the 
simplified area D, a type I region where C1 and C3 are 
curves connected by vertical lines (possibly of zero length). 
A similar proof exists for the other half of the theorem 
when Dis a type II region where C2 and C4 are curves 
connected by horizontal lines (again, possibly of zero 
length). Putting these two parts together, the theorem is 
thus proven for regions of type III (defined as regions which 
are both type I and type II). The general case can then be 
deduced from this special case by decomposing D into a set 
of type III regions. 

If it can be shown that if 
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and 

 

are true, then Green's theorem follows immediately for 
the region D. We can prove (1) easily for regions of 
type I, and (2) for regions of type II. Green's theorem 
then follows for regions of type III. 

Assume region D is a type I region and can thus be 
characterized, as pictured on the right, by 

 

where g1 and g2 are continuous functions on [a, b]. 
Compute the double integral in (1): 

 

Now compute the line integral in (1). C can be 
rewritten as the union of four 
curves: C1, C2, C3, C4. 
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With C1, use the parametric 
equations: x = x, y = g1(x), a ≤ x ≤ b. Then 

 

With C3, use the parametric 
equations: x = x, y = g2(x), a ≤ x ≤ b. Then 

 

The integral over C3 is negated because it 
goes in the negative direction from b to a, 
as C is oriented positively (anticlockwise). 
On C2 and C4, x remains constant, meaning 

 

Therefore, 

 

 

Combining (3) with (4), we get (1) for 
regions of type I. A similar treatment 
yields (2) for regions of type II. 
Putting the two together, we get the 
result for regions of type III. 
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result for regions of type III. 

 

 

 

APPLICATIONS : 

In mathematics 

 

Square Matrices  

       If the number of columns N of matrix A is equal to its 
number of rows, then A is a square matrix of order N. The 
elements aii of a square matrix A form its main diagonal which 
stretches from top left to bottom right. The diagonal composed 
of elements aij for which i þ j ¼ N þ 1 is called the cross 
diagonal and it extends from the bottom left to top right. 
Square matrices possess properties that are not applicable to 
other types of matrices such as symmetry and ant symmetry. In 
addition, many operations such as taking determinants and 
calculating eigenvalues are only defined for square matrices. 
The result of multiplying a square matrix of order N by itself is 
a square matrix of order N. Therefore a square matrix can be 
multiplied by itself as many times as needed and the notation 
Ak designates A multiplied by itself k times, 

i.e., 

 

 

 

A square matrix A is symmetric if aij = aji i.e., AT = A , and ant 
symmetric if aij = -aji. An example of a symmetric square 
matrix of order 3 is  



 

 

and of an anti symmetric square matrix of order 4 is  

 

 

A diagonal square matrix D is one for which all elements off the 
main diagonal are zero while elements on the main diagonal are 
arbitrary. An example of a square diagonal matrix of order 3 is  

A diagonal matrix of order N for which all elements on the main 
diagonal are 1 (i.e., aii = 1) is called an identity matrix of order 
N and is designated by I. An identity matrix of order 4 is given 
by 

      

        The inverse of a square matrix A of order N is the square 
matrix A-1  of order N satisfying A  

 

An upper triangular matrix U is a square matrix in which all 
elements below the main diagonal are zero. Mathematically this 
can be expressed as  

 

 



 

A lower triangular matrix L is a square matrix in which all 
elements above the main diagonal are zero. Using mathematical 
notation, this is written as 

 

Examples of upper and lower triangular square matrices of 
order 3 as  

 

 

 

Using Matrices to Describe Systems of Equations  

                 Matrices can be used to compactly describe systems of 
equations . A system of N equations in N unknowns can be 
written as 

 

in matrix notation, this system of equations is equivalent to 

 



 

or in compact form as 

 

 

Tensors and Tensor Operations : 

 

        Tensors can be thought of as extensions to the ideas 
already used when defining quantities like scalars and vectors 
[2, 20, 21]. A scalar is a tensor of rank zero, and a vector is a 
tensor of rank one. Tensors of higher rank (2, 3, etc.) can be 
developed and their main use is to manipulate and transform 
sets of equations. Since within the scope of this book only 
tensors of rank two are needed, they will be referred to simply 
as tensors. Similar to the flow velocity vector v, the deviatoric 
stress tensor s  will be referred to frequently in this book and is 
used here to illustrate tensor operations. Let x; y; and z 
represent the directions in an orthonormal Cartesian 
coordinate system, then the stress tensor s and its transpose 
designated with superscript  are represented in terms of 
their components as  

 

 

Similar to writing a vector in terms of its components, defining 
the unit vectors i, j, and k in the x; y; and z direction, 
respectively, the tensor s given by  can be written in terms of its 
components as  

 

 

allows defining a third type of vector product for multiplying 
two vectors, known as the dyadic product, and resulting in a 



 

tensor with its components formed by ordered pairs of the 
twovectors. In specific, the dyadic product 

 

of a vector v by itself, arising in the formulation of the 
momentum equation of fluid flow, gives 

 

The gradient of a vector v is a tensor given by 

The sum of two tensors ∂ and T is a tensor ∑ whose 



 

components are the sum of the corresponding components of 
the two tensors, i.e., 

 

         ∑ =∂+T= 

 

Multiplying a tensor s by a scalar s results in a tensor whose 
components are multiplied by that scalar, i.e., 

 

The dot product of a tensor s by a vector v results in the 
following vector: 

 

which upon expanding becomes 

 

 

 

Using  

 



 

 

 

 

 

The above equation can be derived using matrix multiplication 
as 

 

In a similar way the divergence of a tensor t is found to be a 
vector given by 

 

The double dot product of two tensors t and {∆v}  is a scalar 
computed as 

 

The final value is obtained by expanding the above product and 
performing the double dot product on the various terms. For 
example, 

 



 

Performing the same steps on every term in the expanded 
product, the final form of ( t,∆v)  is obtained as 

 

 

 

 

 

Uses of vector integration  is on computer science and 
engineering 

Because vectors and matrices are used in linear algebra, 
anything that requires the use of arrays that are linear 
dependent requires vectors. A few well-known examples are: 

 Internet search 
 Graph analysis 
 Machine learning 
 Graphics 
 Bioinformatics 
 Scientific computing 
 Data mining 
 Computer vision 
 Speech recognition 
 Compilers 
 Parallel computing 

Vector is one of the most important concepts in Physics. It 
scope and usage extends to every corner of physics, from the 
very small i.e. quantum reams to the very fast i.e. relativity, 
encompassing everything that lies in this broad domain. 

 On the Newtonian level, the motion of bodies is 
understood in terms of position, velocity, momentum 



 

vectors for translation motion and associated vectors for 
other kinds of motion. 

 The whole of quantum physics is built on a vector space 
known as Hilbert space. The state of system is 
represented by a vector which resides in this space. 

 In Special theory of relativity, the motion of body is 
studied in terms of four-vectors in the space-time basis. 
General theory of relativity goes beyond vectors into a 
more generalized mathematical structure known as 
tensor. 

We have seen how integration can be used to find an area 

between a curve and the xx-axis. With very little change we can 

find some areas between curves; indeed, the area between a 

curve and the xx-axis may be interpreted as the area between 

the curve and a second "curve'' with equation y=0y=0. In the 

simplest of cases, the idea is quite easy to understand. 

Whether we are interested in a function as a purely 
mathematical object or in connection with some application to 
the real world, it is often useful to know what the graph of the 
function looks like. We can obtain a good picture of the graph 
using certain crucial information provided by derivatives of the 
function and certain limits.       
   

VECTOR INTEGRATION USE IN INTERNET SERCH: 

A retina- The most of the text-retrieval techniques are based on 
indexing keywords. Since only keywords are unable to 
capturing the whole documents’ content, they results poor 
retrieval performance. But indexing of keywords is still the 
most applicable way to process large corpora of text. After 
identification of the significant index term a document can be 
matched to a given query by Boolean Model or Statistical 
Model. Boolean Model applies a match that relies on the extent. 
Fig.1 represents the documents Doc1 and Doc2 in space of three 
terms namely “Information”, “Retrieval” and “System”. Three 
are perpendicular dimensions for each term represents “Term-



 

Independence”. This independence can be of two types namely 
linguistic and statistical. When the occurrence of a single term 
does not depend upon appearance of other term, it is called 
Statistical independence. In Linguistic independence; 
interpretation of a term does not rely on other any term an 
index term satisfies a Boolean expression while statistical 
properties are used to discover similarity between query and 
document in Statistical Model. The statistically based “Vector 
Space Model” which is based on the theme of placing the 
documents in the dimensional space, where n is number of 
distinct terms or words (as- t1, t2…tn) which constitutes the 
whole vocabulary of the corpus or text collection. Each 
dimension belongs to a particular term. Each document is 
considered as a vector as- D1, D2…Dr; where r is the total 
number of documents in corpora. Document Vector can be 
shown as following: Dr={d1r,d2r,d3r,……..dnr} 

PROPOSED SYSTEM: 

In the proposed system, we propose a content ontology and 
location ontology to accommodate the extracted content and 
location concepts as well as the relationships among the 
concepts. We introduce different entropies to indicate the 
amount of concepts associated with a query and how much a 
user is interested in these concepts. With the entropies, we are 
able to estimate the effectiveness of personalization for 
different users and different queries. Based on the proposed 
ontology’s and entropies. Fig 2- System Architecture design We 
adopt an SVM to learn personalized ranking functions for 
content and location preferences. We use the personalization 
effectiveness to integrate the learned ranking functions into a 
coherent profile for personalized reran king. We implement a 
working prototype to validate the proposed ideas. It consists of 
a middleware for capturing user click through, performing 
personalization, and interfacing with commercial search 
engines at the backend. Empirical results show that OMF can 
successfully capture users' content and location preferences and 
utilize the preferences to produce relevant results for the users. 



 

Finally, it significantly out-performs strategies which use either 
content or location preference only. The personalized Meta 
search engines don't require traversing the network, 
downloading web documents or building up an index. They are 
mainly consisted of member search engine selection, query 
forwarding, result integration and other algorithms. So, 
compared to robot based search engines or directory based 
search engines, the personalized Meta search engines have 
much lower technical doorsill and threshold in development 
and maintenance. This forces users to manually submit their 
queries to multiple search engines one after another until they 
find the information they need or give up their retrieval desire. 
The architectural design 

 

Vector integration use in Graphics: 

Applications used for creating and editing vector graphics are 
known as Drawing Packages. Like bitmap graphics software 
there are commercial, freeware and open source Vector drawing 
applications. There are also web-based and free versions of 
vector drawing applications. Most vector graphics software 
applications can also be used to create meta graphics. 

Adobe Illustrator is the industry leader in vector drawing 
applications. This was one of the original software applications 
produced by Adobe. Originally used for creating vector designs 
for print, it is now also used for creating web and screen based 
graphics (including graphics for mobile devices). Until 1989 
Illustrator was only supported on the MAC operating system. At 
the time of writing CS3 is the most up-to-date version. This 
allows for closer integration with Adobe's web authoring and 
2D animation application, Adobe Flash. 

CorelDraw is another popular vector drawing application. It 
has many similar features to Illustrator. One of the differences 
between the two packages is that CorelDraw allows for multi 
page editing whereas illustrator only allows for single page 



 

editing. At the time of writing CorelDraw is part of a suite of 
applications known as CorelDraw Graphics Suite, which 
consists of five applications, including a bitmap editor Corel 
Photo-Paint. The main disadvantage of CorelDraw and possibly 
one of the reasons that Illustrator is more widely used, is that it 
is only supported on the Windows operating system (Windows 
2000 onwards). 

Adobe Freehand (formerly Macromedia) is used for creating 
vector graphics for desktop publishing and web platforms. It 
has a lot of similar features to Adobe Illustrator, so much so 
that Adobe have no plans to upgrade Freehand at present. 
Instead they are suggesting that customers move over to 
Illustrator. Freehand is still on sale though at the time of 
writing. 

Adobe Fireworks - see Bitmap graphics software 
applications section above. 

Other vector drawing applications include: 

 Adobe Flash - see animation applications 
 KAI powertools 
 JascWebDraw 
 LogoEase- web based software 
 The Flame project - Open source software used to create 

SVG files 

 

Animation Software: 

More and more graphics software applications support features 
for creating simple 2D (dimensional) animated graphics. For 
example Photoshop can be used to create animated Gifs, eg 
rollovers. However more complex animations for web and 
multimedia applications can be produced using specialist 
software applications. Paint and drawing applications can be 
used to create the graphics to include in an animation. They 



 

would then be imported into one of the following applications 
and animated. 

 Adobe Flash is the industry standard application for 
creating 2D animation for web and multimedia. This can 
be used to create anything from simple to more complex 
animation. Bitmaps can be integrated and converted to 
vectors. Unlike typical graphics applications Flash has the 
added bonus of being able to produce interactivity using 
'Action Script', therefore it is now used for creating web 
based games. 

The original intention of Flash was purely to create 2D web 
based animation, however, as it has become more popular, its 
scripting language increased and extra features have been 
added, it has turned into a 'web authoring tool'. It is now also 
used to create entire websites. Flash files are vector based. SWF 
(pronounced swift) is the standard published format for files to 
be incorporated into web pages. Flash player is required to view 
.swf files. 

 Adobe Director (formerly Macromedia) is a 'multimedia 
authoring tool' which is used for creating offline (kiosks, 
DVDs) and online multimedia applications including 2D 
animations. Director was devised by designers, developers 
and animators. As a result it uses many of the same terms 
and 'tools' that traditional animators work with, eg frames, 
timelines, key frames, twined frames, scripts. Flash is 
based largely on Director. The main difference between 
the two is their scripting languages. Until now, Director's 
lingo script has been more powerful than Action Script, 
however the gap is narrowing between the two. More 
noticeably Director can be used to create 3D animations. 

Director used to be more associated with creating disk based 
multimedia applications and Flash with web content, however, 
again this is changing. Director produces Shockwave movies for 
the web. These are used to incorporate highly interactive 



 

content within a website, eg games. The Shockwave player is 
required to view shockwave files. 

Other Animation graphics software applications include: 

 ToonBoom Animation 
 Anime Studio 

Vector integration use in physics: 
→  line integral of ∇ψ: 

 
 We found  that there were various ways of taking 

derivatives of fields. Some gave vector fields; some gave 
scalar fields. Although we developed many different 
formulas, everything in Chapter 2 could be summarized in 
one rule: the operators ∂/∂x, ∂/∂y, and ∂/∂z are the three 
components of a vector operator ∇ . We would now like to 
get some understanding of the significance of the 
derivatives of fields. We will then have a better feeling for 
what a vector field equation means. 

 We have already discussed the meaning of the gradient 
operation (∇  on a scalar). Now we turn to the meanings of 
the divergence and curl operations. The interpretation of 
these quantities is best done in terms of certain vector 
integrals and equations relating such integrals. These 
equations cannot, unfortunately, be obtained from vector 
algebra by some easy substitution, so you will just have to 
learn them as something new. Of these integral formulas, 
one is practically trivial, but the other two are not. We will 
derive them and explain their implications. The equations 
we shall study are really mathematical theorems. They will 
be useful not only for interpreting the meaning and the 
content of the divergence and the curl, but also in working 
out general physical theories. These mathematical 
theorems are, for the theory of fields, what the theorem of 
the conservation of energy is to the mechanics of particles. 
General theorems like these are important for a deeper 
understanding of physics. You will find, though, that they 

http://www.feynmanlectures.caltech.edu/II_02.html


 

are not very useful for solving problems—except in the 
simplest cases. It is delightful, however, that in the 
beginning of our subject there will be many simple 
problems which can be solved with the three integral 
formulas we are going to treat. We will see, however, as 
the problems get harder, that we can no longer use these 
simple methods. 

  

→The circulation of a vector field 

 We wish now to look at the curl in somewhat the same way 
we looked at the divergence.           We obtained Gauss’ theorem 
by considering the integral over a surface, although it was not 
obvious at the beginning that we were going to be dealing with 
the divergence. How did we know that we were supposed to 
integrate over a surface in order to get the divergence? It was 
not at all clear that this would be the result. And so with an 
apparent equal lack of justification, we shall calculate 
something else about a vector and show that it is related to the 
curl. This time we calculate what is called the circulation of a 
vector field. If C is any vector field, we take its component along 
a curved line and take the integral of this component all the way 
around a complete loop. The integral is called the circulation of 
the vector field around the loop. We have already considered a 
line integral of ∇ψ earlier in this chapter. Now we do the same 
kind of thing for any vector field C. 
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CONCLUSION: 

Differential equations plays major role in applications of 
sciences and engineering. It arises in wide variety of 
engineering applications for e.g. electromagnetic theory, signal 



 

processing, computational fluid dynamics, etc. These equations 
can be typically solved using either analytical or numerical 
methods. Since many of the differential equations arising in 
real life application cannot be solved analytically or we can say 
that their analytical solution does not exist. For such type of 
problems certain numerical methods exists in the literature. In 
this book, our main focus is to present an emerging meshless 
method based on the concept of neural networks for solving 
differential equations or boundary value problems of type 
ODE’s as well as PDE’s. Here in this book, we have started with 
the fundamental concept of differential equation, some real life 
applications where the problem is arising and explanation of 
some existing numerical methods for their solution. We have 
also presented some basic concept of neural network that is 
required for the study and history of neural networks. Different 
neural network methods based on multilayer perception, radial 
basis functions, multiquadric functions and finite element etc. 
are then presented for solving differential equations. It has 
been pointed out that the employment of neural network 
architecture adds many attractive features towards the problem 
compared to the other existing methods in the literature. 
Preparation of input data, robustness of methods and the high 
accuracy of the solutions made these methods highly 
acceptable. The main advantage of the proposed approach is 
that once the network is trained, it allows evaluation of the 
solution at any desired number of points instantaneously with 
spending negligible computing time. Moreover, different hybrid 
approaches are also available and the work is in progress to use 
better optimization algorithms. People are also working in the 
combination of neural networks to other existing methods to 
propose a new method for construction of a better trail solution 
for all kind of boundary value problems. Such a collection could 
not be exhaustive; indeed, we can hope to give only an 
indication of what is possible. 
 


	DEFINATIONS :
	Scalar fields :
	Vector fields :
	Vectors and pseudo vectors :

	Vector algebra :
	Operators and theorems
	Differential operators
	Integral theorems :

	Gradient theorem :
	Examples
	Example 1
	Example 2
	Example 3


	Divergence theorem
	Intuition :
	Mathematical statement
	Corollaries :

	Example
	Applications :
	Differential form and integral form of physical laws
	Continuity equations


	History
	Examples
	Generalizations
	Tensor fields

	Theorem
	Proof
	First step of the proof (defining the pullback)
	Second step of the proof (first equation)
	Third step of the proof (second equation)
	Fourth step of the proof (reduction to Green's theorem)


	Green's theorem :
	Theorem
	Proof
	when D is a simple region

	VECTOR INTEGRATION USE IN INTERNET SERCH:
	PROPOSED SYSTEM:
	Vector integration use in Graphics:
	Animation Software:
	→  line integral of ∇ψ:
	→The circulation of a vector field
	D-P. N. Dunford and B. J. Pettis, Linear operations on summable functions, Trans AMS 47 (1940), 323-392. D-S. N. Dunford and J. Schwartz, Linear Operators. Part I. General Theory, Wiley Interscience, New York, 1958. E. R. Elliot, Stochastic Calculus a...



